Микрофиламенты

ПРОМЕЖУТОЧНЫЕ ФИЛАМЕНТЫ

МИКРОФИЛАМЕНТЫ

МИКРОТРУБОЧКИ

КЛЕТОЧНЫЙ ЦЕНТР



Общие свойства

Микрофиламенты (МФ) встречаются во всех клетках эукариот. Особенно они обильны в высокоспециализированных мышечных волокнах и клетках, выполняющих функции сокращения мышц. Микрофиламенты входят также в состав специальных клеточных компонентов, таких как микроворсинки, ленточные соединения эпителиальных клеток, в состав стереоцилий чувствительных клеток. Микрофиламенты образуют пучки в цитоплазме подвижных клеток животных и слой под плазматической мембраной кортикальный слой (рис. 244, а и 245). У многих растительных клеток и клеток низших грибов они располагаются в слоях движущейся цитоплазмы.

Рис. 244. Микрофотография элементов цитоскелета фибробласта, полученная с помощью электронного микроскопа

а — микрофиламенты (МФ) в зоне ламеллоплазмы; 6 — микротрубочки (МТ)

 

Рис. 245. Пучки актиновых микрофиламентов в клетках культуры ткани, окрашенных флуоресцирующими антителами (фото А.В. Буракова)

Ядра - фиолетовые

Основным белком микрофиламентов является актин. Это неоднородный белок, в различных клетках могут быть разные его варианты или изоформы, каждая из которых кодируется своим геном. Так, у млекопитающих есть шесть различных актинов: один в скелетных мышцах, один в сердечной мышце, два типа в гладких мышцах (один из них в сосудах) и два немышечных цитоплазматических актина являются универсальным компонентом любых клеток млекопитающих. Все эти изоформы актина очень сходны по аминокислотным последовательностям, вариантными в них являются концевые участки, которые определяют скорость полимеризации, но не влияют на сокращение. Такое сходство актинов, несмотря на некоторые отличия, определяет их общие свойства. Актин имеет молекулярную массу около 42 тыс. и в мономерной форме имеет вид глобулы (G-актин), содержащей в своем составе молекулу АТФ. При его полимеризации образуется тонкая фибрилла (F-актин) толщиной 8 нм, представляющая собой пологую спиральную ленту. Актиновые микрофиламенты полярны по своим свойствам. При достаточной концентрации G-актин начинает самопроизвольно полимеризоваться. При такой спонтанной полимеризации актина на образовавшейся нити микрофиламента один из ее концов быстро связывается с G-актином (плюс-конец микрофиламента) и поэтому растет быстрее, чем противоположный (минус-конец) (рис. 246). Если концентрация G-актина будет недостаточной, то образовавшиеся фибриллы F-актина начинают деполимеризоваться. В растворах, содержащих так называемую критическую концентрацию G-актина, будет устанавливаться динамическое равновесие между полимеризацией и деполимеризацией, в результате чего фибрилла F-актина будет иметь постоянную длину (рис. 247). Из этого следует, что актиновые микрофиламенты представляют собой очень динамичные структуры, которые могут возникать и расти или же, наоборот, разбираться и исчезать в зависимости от наличия глобулярного актина. На растущем конце нити актина встраиваются мономеры, содержащие АТФ. По мере нарастания полимера происходит гидролиз АТФ, и мономеры остаются связанными с АДФ. Молекулы актина, соединенные с АТФ, прочнее взаимодействуют друг с другом, чем мономеры, связанные с АДФ.

Рис. 246. Полимеризация актинового микрофиламента

На плюс-конце филамента включение мономерного актина происходит быстрее

 

Рис. 247. Скорость роста актиновых микрофиламентов при различных концентрациях свободного актина

В клетках такая, казалось бы, неустойчивая фибриллярная система стабилизируется массой специфических белков, ассоциирующих с F-актином. Так, белок тропомиозин, взаимодействуя с микрофиламентами, придает им необходимую жесткость. Целый ряд белков, например филамин и α-актинин, образует поперечные скрепки между нитями F-актина, что приводит к образованию сложной трехмерной сети, придающей гелеобразное состояние цитоплазме. Другие дополнительные белки могут связывать филаменты в пучки (фимбрин) и т.д. Кроме того, существуют белки, взаимодействующие с концами микрофиламентов, предотвращая их разборку, они стабилизируют их. Взаимодействие F-актина со всей этой группой белков регулирует агрегатное состояние микрофиламентов, их рыхлое или, наоборот, тесное расположение, связь их с другими компонентами. Особую роль при взаимодействии с актином играют белки миозинового типа, которые вместе с актином образуют комплекс, способный к сокращению при расщеплении АТФ (см. рис. 262).

Таким образом, микрофиламенты представляют собой фибриллы полимеризованного актина, связанного с многими другими белками. В принципе микрофиламенты во всех немышечных клетках могут осуществлять по крайней мере два ряда функций: быть частью сократительного аппарата, взаимодействуя с моторными белками (миозин), или участвовать в формировании скелетных структур, способных к собственному движению за счет процессов полимеризации и деполимеризации актина.

Особенно много сведений о цитоскелете и о микрофиламентах получено при изучении фибробластов в культуре ткани, обладающих способностью к амебоидному движению. Эти клетки не имеют ответственных за движение постоянных фибриллярных структур, их фибриллярный аппарат все время находится в реорганизации: часть фибриллярных элементов разбирается в одних участках клетки и новообразуется в других.

Обычно ползущий по поверхности субстрата фибробласт поляризован: у него есть движущийся конец и «хвостовой» отдел (рис. 248 и 249). На движущемся конце, который часто более распластан по субстрату, чем боковые и хвостовые участки фибробласта, постоянно возникают и убираются тонкие нитевидные или пластинчатые выросты — ламеллоподии. Это — ведущий край клетки (ламеллоплазма), который и обеспечивает движение фибробласта вперед. В таком движущемся фибробласте с помощью антител можно узнать места расположения актина. Он будет распределяться по трем основным частям клетки: в виде тонкого слоя (1) он располагается по всему периметру клетки под плазматической мембраной. Это кортикальный (cortex — кора) слой. Обильно актин выявляется в выростах цитоплазмы ведущего края клетки (2) и (3) в пучках актиновых филаментов, отходящих от ведущего края в глубь клетки (см. рис. 245).

Рис. 248. Микрофиламенты поляризованного движущегося фибробласта

1 — ламеллоподии движущегося края; 2 — сеть актиновых филаментов ламеллы; 3 — пучки микрофиламентов; 4 — микрофиламенты кортикального слоя; 5 — фокальный контакт

 

Рис. 249. Поляризованный движущийся фибробласт (фото И.С. Григорьева)

Красным цветом окрашены микрофиламенты и их пучки, связанные с флуоресцирующими антителами к актину, зеленым — микротрубочки, окрашенные антителами к тубулину. 1 — ламеллоплазма; 2 — ядро

Кортикальный слой состоит из плотной трехмерной сети актиновых филаментов, ассоциированных с плазматической мембраной. Он обеспечивает механическую устойчивость поверхностному слою цитоплазмы и создает условия, позволяющие клетке изменять свою форму и двигаться. Этот слой постоянно меняет свое агрегатное состояние, переходя из состояния структурированного геля в жидкий золь. Такие переходы гель—золь связаны с изменениями в структуре кортикального слоя. Здесь в ассоциации с актиновыми филаментами находятся фибриллярные белки-стабилизаторы (например, филамин), которые образуют сшивки в местах пересечения филаментов, что придает жесткость всему кортикальному слою. Однако эта жесткость может быть легко снята за счет взаимодействия с другими белками, такими как гельзолин, которые вызывают фрагментацию и разборку филаментов и тем самым разжижают гель. Такая перестройка подмембранного слоя особенно выражена в ведущем крае, что позволяет быстро менять форму его поверхности, образовывать ламеллоподии и двигаться вперед. В то же время сеть актиновых филаментов способна к сокращению, так как в ней обнаружены короткие миозиновые агрегаты. Это приводит к втягиванию ламеллоподии или к подтаскиванию клеток вперед. Сеть актиновых филаментов в ведущем крае организована более определенно, чем в остальном кортексе. Здесь от небольших начальных выростов плазмалеммы внутрь клетки отходят пучки актиновых филаментов, оканчивающихся своими плюс-концами на плазматической мембране.

Сам процесс образования актиновых филаментов и их роста в зоне ламеллоплазмы зависит от ряда регуляторных белков. Один из них, белок WASp/Scar, связывается с плазматической мембраной. В его составе есть участки, скрепляющиеся с актином. Другой специальный белковый комплекс Аrр2/3 соединяется с минус-концом растущей цепи полимера, препятствуя его деполимеризации. Такие сложные взаимодействия двух групп регуляторных белков приводят к тому, что на границе с плазматической мембраной происходит надстраивание растущих филаментов, которые могут прогибать плазматическую мембрану так, что возникает тонкий вырост — филоподия (рис. 250).

Рис. 250. Образование филоподии

1 — плазматическая мембрана; 2 — актиновый микрофиламент; 3 — белок Аrр 2/3; 4 — белок WASp

Иначе происходит полимеризация актина при образовании ламеллоподии. Здесь также ведущую роль играют белки WASp/Scar, которые закрепляются на плазматической мембране, связываются с комплексом Аrр2/3 и прикрепляют его к боковой поверхности уже готовой актиновой фибриллы. Комплекс Аrр2/3 инициирует полимеризацию новой актиновой фибриллы, которая начинает расти под углом около 70° по отношению к первичной нити актина и закрепляется на плазматической мембране. Таких новых белковых цепей возникает несколько, и они как бы веером простираются к плазматической мембране и толкают ее вперед. Так образуется псевдоподия, или ламеллоподия (рис. 251), за счет наращивания актиновых филаментов на плюс-концах. Одновременно с этим происходит деполимеризация тех минус-концов филаментов, которые не заблокированы комплексами Аrр2/3 и подвергаются воздействию белков, способствующих деполимеризации микрофиламентов.

Рис. 251. Образование ламеллоподии

Обозначения см. рис. 250. 5 — кэпирующий белок

Таким образом, сложный процесс роста микрофиламентов приводит к перемещению в пространстве края движущейся клетки. По мере возникновения ламеллоподии их плазматическая мембрана с помощью белков-интегринов образует с субстратом фокальные контакты, от которых отходят пучки актиновых филаментов, участвующие уже в другой форме подвижности, связанной со взаимодействиями между актиновыми филаментами и моторными белками-миозинами.

Миозины являются одним из составных компонентов микрофиламентов. Основная работа по перемещению клеток или их внутренних компонентов с помощью микрофиламентов происходит за счет работы актомиозинового комплекса, где актиновые фибриллы играют роль направляющих («рельсы»), а миозины транслокаторы. Весь актомиозиновый комплекс представляет собой АТФазу, и движение осуществляется за счет энергии гидролиза АТФ.

Миозины представляют собой семейство сходных белков. У всех из них есть головная (моторная) часть, отвечающая за АТФазную активность комплекса, шейка, которая связана с несколькими регуляторными белковыми субъединицами, и хвост, характерный для каждого типа миозина, определяющего специфичность функции в клетке. Существуют три основных типа миозинов. Миозин II и миозин V являются димерами, у которых α-спиральный участок хвоста образует сверхспиральный палочковидный участок. Миозин I представляет собой мономерную молекулу (рис. 252). Две молекулы миозина II могут ассоциировать друг с другом, образуя биполярную толстую фибриллу, участвующую в мышечном сокращении, при сокращении внутриклеточных пучков микрофиламентов и при делении клетки. Миозины I и V типа участвуют во взаимодействиях между элементами цитоскелета и мембранами, например в транспорте везикул.

Рис. 252. Типы миозинов

а — миозин I; б — миозин V ; в миозин II

Механизм работы актомиозиновых комплексов очень сходен, независимо от типа миозина: он начинается со связи миозиновой головки с актиновым филаментом, ее изгибанием и последующим откреплением. За каждый цикл миозиновая головка перемещается в направлении плюс-конца актинового филамента на 5—25 нм при гидролизе одной молекулы АТФ. Таким образом происходит однонаправленное смещение или скольжение микрофиламентов относительно молекул миозина (рис. 253).

Рис. 253. Последовательность актомиозинового движения

а — исходное положение: головка миозина (1) связана с актиновым филаментом (2); б — головка миозина отходит от актинового филамента; в головка миозина связывается с другой субъединицей актина; г — головка миозина переходит в исходное положение: перемещение актинового филамента



Актомиозиновые комплексы немышечных клеток

Актомиозиновые комплексы участвуют в движении ламеллоплазмы. Так, молекулы миозина I были выявлены на ведущем крае движущихся амебных форм диктиостелиума, в то время как миозин II типа обнаруживался в теле и конце клетки. Миозин I типа участвует в движении микроворсинок энтероцитов. Микроворсинки представляют собой тонкие (0,1 мкм) и длинные (около 1 мкм) выросты, тесно расположенные друг около друга, наподобие густой щетки, покрывающей всю поверхность клетки, смотрящую в просвет кишечника. На каждой клетке кишечного эпителия насчитывается несколько тысяч микроворсинок, которые увеличивают всасывающую поверхность в десятки раз. Внутри каждой микроворсинки располагается плотный пучок из 20—30 актиновых микрофиламентов. Актиновые нити закреплены своими плюс-концами к вершине микроворсинки. Жесткость всего пучка определяется рядом белков, связывающих актин поперечными связками — фимбрином и фасцином (рис. 254). Нижняя часть актинового пучка вплетена в сеть из молекул спектрина — примембранного белка. Такая фибриллярная арматура делает тонкие микроворсинки жесткими и прочными. В этом проявляется каркасная, скелетная роль микрофиламентов. Но оказалось, что в составе микроворсинок обнаруживается также миозин, относящийся к миозину I, содержащему только одну головку и короткий хвост, которым он связан с плазматической мембраной. Головки миозина I связываются с актиновыми филаментами и могут вызывать укорачивание или удлинение микроворсинок по принципу скользяших нитей.

Рис. 254. Строение микроворсинок

1 плазматическая мембрана; 2 актиновые микрофиламенты; 3 белки, связывающие актин в пучки (фимбрин, фасцин); 4 — аморфная «шапочка»; 5 — латеральные ручки, минимиозин; 6 — спектриновая терминальная сеть; 7 — слой промежуточных филаментов

Миозин I также вовлекается в транспорт вакуолей. Например, в клетках кишечного эпителия миозин I связан с некоторыми везикулами аппарата Гольджи. С везикулами аппарата Гольджи в клетках мозга позвоночных связан миозин V типа.

Наиболее широко представлен в актомиозиновых комплексах миозин II типа. Он входит в состав пучков микрофиламентов как в ведущем крае фибробластов, так и в пучках микрофиламентов в теле клетки. Считается, что сокращение этих комплексов приводит к подтягиванию клетки вперед (рис. 255). Актиновые пучки в комплексе с миозином II особенно хорошо выявляются в остановившихся фибробластах, где они исполняют совсем другую роль. Эти фибриллярные пучки (они носят название напряженных нитей, или стресс-фибрилл) тоже содержат все компоненты мышечных тканей (рис. 256 и 257). Они крепятся с помощью фокальных контактов на плазматической мембране и при сокращении их вызывают вне клетки натяжение на фибриллах матрикса (коллагеновые волокна), что, вероятно, способствует ориентированной полимеризации компонентов внеклеточного матрикса. Это доказывается тем, что если фибробласты посадить на тонкие пленочные подложки, то после образования стресс-фибрилл пленка около клеток начинает морщиться, собираться в складки.

Рис. 255. Перемещение фибробласта по субстрату

1 — ламеллоподии; 2 — фокальный контакт; 3 — пучок микрофиламснтов. I—IV — стадии перемещения пучков микрофиламентов

 

Рис. 256. Стресс-фибриллы фибробласта

 

Рис. 257. Стресс-фибриллы, окрашенные антителами к актину, в клетке культуры ткани (фото А.В. Буракова)

Другие примеры связи актиновых микрофиламентов с плазматической мембраной были приведены при описании клеточных контактов, таких как адгезионный поясок в клетках кишечного эпителия и фокальный контакт фибробластов. Адгезивный поясок контактируете циркулярным пучком микрофиламентов, в составе которых кроме актина есть и миозиновые молекулы. При акте сокращения этот циркулярный периферический пучок может сжимать клетку, изменять её форму.

Во время митоза в нормальных условиях клетки животных делятся путем образования перетяжки, или борозды деления. Это происходит вследствие того, что в делящейся клетке в её кортикальном слое образуется скопление паралелльно идущих актиновых фибрилл, образующих под плазмалеммой сократимое кольцо. В состав кольца кроме актина входит миозин II и другие мышечные белки; сокращение кольца приводит к возникновению перетяжки на исходной клетке, что в конце концов обусловливает деление клетки надвое (рис. 258).

Рис. 258. Разделение тела (цитотомия) клетки с помощью кольцевого пучка микрофиламентов (а) и блокада этого процесса с помощью цитохалазина (б)

Цитохалазин ингибитор полимеризации актина, вызывает деполимеризацию актина в сократимом кольце, цитотомии не происходит, в результате возникает двуядерная клетка, так как при этом расхождение хромосом не нарушается.

Актиновые микрофиламены являются одним из динамичных элементов цитоскелета, который подвержен быстрым перестройкам, особенно в движущихся клетках.



Мышечные клетки

Специализированные мышечные клетки многоклеточных животных организмов имеют в цитоплазме сократимые фибриллы — миофибриллы. Особенно много миофибрилл в скелетных мышечных клетках и клетках сердечной мышцы, в гладкомыщечных клетках. Скелетные мышцы состоят не из отдельных клеток, а из мышечных волокон, симпластов, образовавшихся за счет слияния мышечных клеток — миобластов. В скелетной и сердечной мускулатуре миофибриллы имеют характерную особенность — они выглядят исчерченными или поперечнополосатыми (отсюда и название — поперечнополосатая мышечная ткань) (рис. 259 и 260). В световой микроскоп видно, что пучки миофибрилл окрашиваются неравномерно: через равные промежутки длины в них видно чередование темных и светлых участков. Темные участки называются анизотропными дисками (А-дисками), а светлые — изотропные (I-диски). Светлый I-диск пересекается полоской Z. Таким образом, миофибрилла представляет собой нить (толщиной 1—2 мкм) с чередующимися участками:

А + 1/2 I + Z + 1/2 I + А + 1/2 I + Z + ... и т.д.

Рис. 259. Микрофотография миофибрилл в кардиомиоцитах крысы, полученная с помощью электронного микроскопа (фото Т.В. Липиной)

С — саркомер; Z — Z-полоска; А — анизотропный диск; М — М-полоска

Рис. 260. Строение миофибрилл поперечно-полосатой мышечной ткани

а — строение одиночной миофибриллы: А — анизотропный диск, Z — Z-диск;

б — схема строения саркомера: А — актиновые (тонкие) протофибриллы, М — миозиновые (толстые) протофибриллы, Z — диск, содержащий α-актинин

Оказалось, что единицей строения и функционирования является саркомер участок между двумя Z-дисками. Величина саркомеров в расслабленном состоянии всегда одинакова (1,8-2,8 мкм в зависимости от вида животных). Подробности строения саркомера были получены только при изучении миофибрилл в электронном микроскопе. Оказалось, что миофибрилла подразделяется на ряд более тонких протофибрилл. Их диаметр в разных частях саркомера различный. В I-дисках встречаются тонкие (около 8 нм) нити длиной около 1 мкм, а в А-дисках кроме тонких присутствуют толстые (около 16 нм толщиной) нити длиной до 1,5 мкм. Все эти нити, протофибриллы, располагаются паралелльно друг другу и друг в друга не переходят. Если рассматривать строение саркомера более подробно, то видно, что вдоль него располагаются три участка протофибрилл: тонкие, связанные с Z-диском, затем толстые и снова тонкие, связанные со следующим Z- диском (см. рис. 260). В зоне А-дисков кроме толстых фибрилл располагаются концы тонких, идущих от двух Z-дисков.

Была выяснена химическая природа всех компонентов миофибрилл. Оказалось, что тонкие нити состоят в основном из белка актина, а толстые из белка миозина II. Z-диски имеют в своем составе белок α-актинин и десмин. В тонких нитях кроме актина находятся белки тропомиозин и тропонин.

Миозин, входящий в состав толстых нитей, — очень крупный белок (молекулярная масса 500 тыс.), состоящий из шести цепей: двух длинных, спирально обвивающихся одна вокруг другой (тяжелые цепи), и четырех коротких (легкие цепи), которые связываются с глобулярными головками длинных цепей. Последние обладают АТФазной активностью, могут реагировать с фибриллярным актином, образуя актомиозиновый комплекс, способный к сокращению. Толщина миозиновых фибрилл связана с тем, что длинные (150 нм) молекулы миозина агрегируют так, что образуют пучки, в которые входит около 300 таких молекул. В миозиновых толстых (16 нм) протофибриллах длинные молекулы лежат «хвост к хвосту» так, что головки миозина располагаются на концах таких нитей, в средней их части головок нет (рис. 261). Головки образуют поперечные мостики, связывающие между собой актиновые и миозиновые нити.

Рис. 261. Молекула миозина (а) и миозиновый протофиламент (б)

За счет такой связи головок миозина с актином возникают актомиозиновые комплексы, активность которых в сотни раз выше, чем АТФазная активность одних миозинов.

Актиновые протофибриллы связаны на одном конце с Z-диском, который состоит из палочковидных, биполярных молекул белка α-актинина, который соединяет актиновые фибриллы в пучки. С двух сторон к Z-диску прикрепляются плюс-концы актиновых нитей соседних саркомеров. Функция Z-дисков заключается как бы в связывании соседних саркомеров друг с другом; Z-диски не являются сократимыми структурами.

Толстые, миозиновые, протофиламенты также связаны с Z-диском: концы толстых протофиламентов также заякорены в Z-диске с помощью длинных и гибких фибриллярных белков — титинов. Миозиновые нити в поперечнике миофибриллы располагаются в гексагональном порядке, так, что каждая миозиновая нить окружается шестью актиновыми нитями (рис. 262). В мышце нет сокращающихся, уменьшающих свою длину молекул. Сокращение происходит за счет уменьшения расстояния между Z-дисками, т.е. за счет уменьшения длины саркомеров примерно на 20%. Механизм мышечного сокращения заключается в кооперативном укорачивании всех саркомеров по всей длине миофибриллы. Г. Хаксли показал, что в основе сокращения лежит перемещение относительно друг друга тонких и толстых нитей. При этом толстые миозиновые нити как бы входят в пространства между актиновыми нитями, приближая друг к другу Z-диски. Эта модель скользящих нитей может объяснить не только сокращение поперечнополосатых мышц, но и любых сократимых структур (рис. 263).

Рис. 262. Взаимное расположение актиновых (1) и миозиновых (2) молекул в анизотропной области саркомера

ТММ — головки миозина II

Рис. 263. Схема мышечного сокращения за счет взаимного скольжения нитей

а расслабление; б сокращение.

1 — толстые нити (миозин); 2 тонкие нити (актин)

В гладких мышечных клетках также имеются актиновые и миозиновые нити, но они не так правильно расположены, как в исчерченных мышцах. Здесь нет саркомеров, а среди пучков актиновых прото фибрилл без особого порядка располагаются миозиновые молекулы, которые не образуют толстых агрегатов как в случае соматических мышц, а представляют собой комплексы из 15-20 миозиновых молекул (рис. 264).

Рис. 264. Схема гладкомышечной клетки

1 — актомиозиновые пучки; 2 — плотные примембранные и цитоплазматические тельца




Величко В.В. © Copyright 2008.

Hosted by uCoz